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1 Abstract

An open problem in imaging spectroscopy is generating
an accurate model of the atmosphere. Physical proper-
ties of the atmosphere cannot be directly modeled, and
hence this becomes an inverse problem, where a proxy
quantity is measured, to derive atmospheric properties.
The optical effects are captured within the radiative
transfer equation (RTE), solving of which entails con-
straining the boundary conditions captured as an ini-
tial state vector. Optimal Estimation is a method used
for the inverse problem of retrieving an accurate state
vector. However, the major hurdle is the computational
cost associated with running the forward model numer-
ous times. Under certain assumptions, using the uni-
versal approximation theorem, we may approximate
this continuous function using a multilayer perceptron.
We simulate data to generate a high-dimensional pa-
rameter space, which is run through the forward model
(RTE) to synthesize radiance values, which are decom-
posed to generate a simpler model. Our model repro-
duces the mapping to within numerical precision after
being trained using state of the art deep learning tech-
niques resulting in a multi-fold speedup. Further, we
designed an automated system to track the data prod-
uct flow at process level granularity. The consolidated
system results in a streamlined pipeline, reducing the
time to generate scientific results.

2 Overview

2.1 Imaging Spectroscopy

The concept of imaging spectroscopy entails measur-
ing a grid of radiances in multiple contiguous spectral
channels. These images are acquired through the use
of an imaging spectrometer supported onboard an air-
borne or orbital platform.

Figure 1: Imaging Spectrometer NASA-JPL/BIOS

2.2 Radiative Transfer

The radiative transfer equation (RTE), models atmo-
spheric interactions such as the energy lost through ab-
sorption, gained by emission, and subsequent redistri-
bution through scattering.
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Where

jν → EmissionCoef f icient

kν,s→ ScatteringOpacity

kν,a→ AbsorptionOpacity

A complete explanation of the radiative transfer
equation is beyond the scope of this paper however, the
reader is encouraged to refer to [3] for an in-depth anal-
ysis and discussion regarding radiative transfer mod-
eling. Analytic solutions to the RTE exist for simpli-
fied assumptions, but for complex modeling, numerical
methods are required. Traditional numerical methods
such as Monte Carlo, are encapsulated as solvers in ra-
diative transfer codes such as libRadtran.

2.3 Atmospheric Correction

The quantity measured by an imaging spectrometer,
which is typically solar radiance, is subject to atmo-
spheric effects such as absorption and scattering. Thus,
in order to accurately study surface properties, these at-
mospheric effects must be taken into account and cor-
rected for, in a process called atmospheric correction.
The process in which this is done has evolved over time
from empirical line based methods to more recent ap-
proaches such as modeling using the radiative transfer
equation. Succinctly, the typical atmospheric correc-
tion process is structured as

1. An initial guess for the state vector (contains rep-
resentative properties of atmospheric conditions)

2. Using the parameters of the initial state vector to
constrain the boundary conditions of the radia-
tive transfer equation

3. Solving (through numerical methods) to obtain a
unique set of radiance values per band (depend-
ing on the spectral resolution)

4. Reverse propagating the values through Optimal
Estimation, to obtain a better estimate of the orig-
inal state vector
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Figure 2: Process of Atmospheric Correction [1]

This is repeated millions of times during the typi-
cal lifetime of the process. A significant drawback to
obtaining an accurate estimate of the state vector, is
the sheer computational requirement associated with
solving the complex radiative transfer model multiple
times using numerical methods. Hence, it is imperative
to design faster methods that will enable better science
results downstream.

2.4 Neural Networks

Neural Networks are non-linear function estimators
that are used for a variety of tasks from regression to
classification. They are particularly useful in a high di-
mensional parameter space where they are able to effi-
ciently fit accurate hyperplanes.

Figure 3: Neuron [2]

The basic unit of a neural network is a neuron,
which consists of a transfer function and an activation
function. The transfer function multiplies the inputs
by a set of weights, which is then passed through an
activation function. The activation function is a non-
linearity such as the hyperbolic tan, the rectified linear-
ity, sigmoid, etc. A number of such neurons are then
cascaded together to form a large hierarchical model
which is able to learn complicated distributions of data.

2.5 Universal Approximation Theorem

The Universal Approximation Theorem states that a
feed-forward network with at least one hidden layer
containing a finite number of neurons (i.e. a multilayer
perceptron), can approximate continuous functions on
a compact subset of R

n, under certain assumptions of
the activation function.
More precisely,
Let ϕ(·) be a nonconstant, bounded, and monotonically
increasing continuous function. Let Im denote the m-
dimensional unit hypercube [0,1]m. The space of con-
tinuous functions on Im is denoted by C(Im). Then
given any ε > 0 and any function f ∈ C(Im), there exists
an integer N , real constants νi ,bi ∈ R and real vectors
wi ∈Rm where i = 1, · · · ,N such that we can define:

F(x) =
N∑
i=1

νiϕ(wTi x+ bi) (2)

such that ∀x ∈ Im

|F(x)− f (x)| < ε (3)

3 Method

3.1 Dataset Synthesis

An optimal set of parameters was chosen would enable
the model to generalize well for real-life scenarios. This
included:

1. Wavelength (λ) ∈ [740,800] Nanometer

2. Albedos ∈ [0,100] %

3. Visibility Conditions ∈ [6,100] Kilometers

4. Default Aerosol Conditions (libRadtran)

The radiance quantity which is measured by the
imaging spectrometer can be analytically decomposed
to reflectance.

ρ =
πL

cosθ
(4)

Where
L→ RadianceatSensor

F→ SolarIrradiance

θ→ SolarZenithAngle

A choice was made to model this intermediate quan-
tity instead of the radiance directly due to the following
reasons

- More stable output target, resulting in a reduction
in variation.

- Decouples the radiative transfer modeling from
the solar input function.
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The TOA reflectance can further be decomposed
into intermediate quantities such as transmission,
albedo, and surface reflectance through the synthesis
of TOA at three constant albedos and using basic alge-
braic manipulation.

ρTOA = ρATM +
T ρs

1− Sρs
(5)

Where
T → T ransmission

S→ SphericalAlbedo

ρs→ Surf aceRef lectance

Fitting the model on these simpler quantities re-
sults in a higher final accuracy, recombination of which
yields the TOA reflectance.

3.2 Network Architecture

A custom architecture was designed to capture the un-
derlying physical parameter space. The complete net-
work consists of

- Auxiliary Support Nodes:
Responsible for supplying a normalized input
space to the constituent subnetworks.

- Monochromatic Subnetworks:
Responsible for predicting the value for a single
band.

Figure 4: Monochromatic Subnetwork

A collection of N such monochromatic subnetworks
predicting the value per band results in the entire spec-
trum.

Figure 5: ACDNN

3.3 Results

The custom designed network architecture was imple-
mented using a mixture of Keras [4] and Tensorflow
[5], and trained on a high-performance supercomputer
cluster optimized for parallel computation using state
of the art deep learning techniques proved to perform
well on a variety of machine learning tasks. The er-
ror metric used for evaluation was least mean squares,
which resulted in an average error of 7 ∗10−6, using 10-
fold cross-validation.

Figure 6: Plot of Predicted Output

3.4 Future Work

Future directions include expanding the physical pa-
rameter space to synthesize a spectrum influenced by a
larger state vector. Once this larger parameter space
has been incorporated to generate a model of higher
complexity, we will then proceed to test the model
across a constrained space of sample data.
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4 Automated Storage & Integration
System

4.1 Data Consolidation & Archival Track-
ing

Sensitivity measurements are bound to evolving con-
figuration formats, due to upgradation in hardware ca-
pabilities as the lifecycle of the project progresses. This
creates a hindrance in the time to generate data driven
scientific results, as a significant amount of time must
be invested by the researcher to process these files of
varying configuration formats. A next-generation sys-
tem must be created that can efficiently process data
across various configuration formats as needed, de-
pending on the specific case. The system should further
be able to track the current state of the archive on the
basis of defined characteristics, across all components
of the pipeline. This consolidated system would result
in a more streamlined data workflow, which would po-
tentially reduce the time to generate data-driven scien-
tific results.

4.2 Objectives

The prime objective of the system is to create a next-
generation science data workflow by streamlining the
existing pipeline. The system improves the efficiency
of analysis, through the reduction in manual workload.
The system could further be used to improve the au-
tomation of the analysis through a global configuration
database. The workflow has been automated to track
the current state of the archive by abstracting the pro-
cessing flow to the granularity of degree of processing.
The tracking is characterized by features such as:

1. Which files have been analyzed, and level to
which every file been processed in the pipeline

2. Where are the files stored in the system

3. Associated metadata (date of creation, date
changed)

Concretely the baseline level of efficiency for this
system is characterized through a higher degree of data
insight coupled with a reduced system complexity, ease
of integration with current SDS, and an improvement
in the data product generation latency.

5 Method

The specifications of the current versions of the L1B
products and L2B products may be found at [15] and
[16]. Prior to initiating work on the project, a hands-
on systems orientation was given, to gain domain level
insight to the data flowing through the system.

Upon project initiation, a multi-step procedure of
satisfying the objectives occurred in the following man-
ner:

1. A hands-on orientation to the SDS, where a de-
tailed interaction was done with the SDS team to
understand in further depth the nature of the sys-
tem.

2. A requirements elicitation phase to ensure effi-
cient and precise gathering of the features to be
introduced.

3. The design of the archival state tracking mecha-
nism to cover all required characteristics.

4. Installation and configuration of pre-requisite
software packages, along with the transfer of con-
figuration data into a NoSQL (MongoDB) data
store to account for the heterogenous nature of
the data.

5. A prototype implementation of the parser + state
tracking mechanism across a small section of the
pipeline.

6. An iterative approach to development to converge
on target performance measures through the gen-
eration of statistics to log current system perfor-
mance.

7. Running an A/B test to ensure that the system in-
tegrates well into the current SDS, and to mitigate
any possible challenges.

Figure 7: ASIST System
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Appendix

About CORAL

According to a recent investigation, an estimated 33-50
% of the world’s coral reefs have undergone degrada-
tion, believed to be as a result of climate change [11].
However, the data supporting the investigation are scat-
tered, and the exact relation it has to the environmental
condition cannot be easily established. In order to bet-
ter predict the future of the global reef ecosystem, the
CORAL campaign will explore the relation between the
environmental condition and influential biogeophysi-
cal parameters. The objectives of the CORAL campaign
as stated [12] are:

• To measure the condition of representative coral
reefs across the global range of reef biogeophysical val-
ues. The primary indicators for coral reef condition are
benthic cover (ratio of coral, algae, and sand), primary
productivity, and calcification.

• To establish empirical models that relate reef con-
dition to biogeophysical forcing parameters. Ten pri-
mary biogeophysical parameters have been selected for
their recognized influence on components of the reef
system. [12]

Figure 8: CORAL Survey Area [12]

The CORAL project consists of a hierarchical multi-
layer data processing system, the Software Data System
(SDS), that processes data products at various levels
in accordance with the specification for EOSDIS data
products. [13]

Data Product Description

Level 0
Reconstructed, unprocessed

PRISM digitized numbers (DN)
at full resolution with GPS

Level 1

Calibrated spectral radiance
with geolocation information
including illumination and

observation geometry

Level 2

Benthic reflectance generated
following atmosphere and water

column radiative transfer
inversion with geolocation,

support processing information
and flags

Level 3

Benthic cover, i.e., seafloor
classified into coverage of

benthic types (coral, algae, sand)
with geolocation, uncertainties,

and flags

Level 4
Benthic primary productivity

and calcification

Table 1: Data Products [14]

Figure 9: CORAL Data System [14]

More information regarding the CORAL project and
the PRISM imaging spectrometer may be found on the
project website. 2

2http://coral.jpl.nasa.gov.
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