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ABSTRACT

Visualization tools for supervised learning (SL) allow users to interpret, introspect, and
gain an intuition for the successes and failures of their models. While reinforcement
learning (RL) practitioners ask many of the same questions while debugging agent
policies, existing tools are not a good fit for the RL setting as these tools address
challenges typically found in the SL regime. Whereas SL involves a static dataset, RL
often entails collecting new data in challenging environments with partial observability,
stochasticity, and non-stationary data distributions. These unique characteristic of the
RL framework necessitate the creation of alternate visual interfaces to help us better
understand agent policies trained using RL. In this work, we design and implement an
interactive visualization tool for debugging and interpreting RL. Our system identifies
and addresses important aspects missing from existing tools and we provide an example
workflow of how this system could be used, along with ideas for future extensions. We
explain one such extension under development to increase insight into the learning
dynamics of actor-critic learning algorithms by visualizing optimization landscapes.
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L I ST OF F IGURES

Figure 1.1 Machine Learning Paradigms Taxonomy One way to think about
the different machine learning paradigms is by contrasting on the
presence of labeled data and a loss function. This leads to a figure
as shown that compares the different approaches: supervised learn-
ing, semi-supervised learning, unsupervised learning, reinforcement
learning. 2

Figure 1.2 Tool Comparison Comparing between a representative tool for de-
bugging RL in the existing ecosystem (L), and Vizarel (ours) (R),
highlights the difference in design intent between both systems. L
Illustrates the plotting of scalar metrics such as policy loss or mean
reward. R Illustrates an interactive interface designed to easily show
the correspondence between scalar metrics and states (images). The
points here are individual states in the replay buffer and the interactive
scalar plot is a single trajectory, which we explain in further detail in
Chapter 3. 3

Figure 2.1 RL Framework Figure illustrating the reinforcement learning frame-
work. The agent interacts with the environment at every timestep t by
observing a state st and taking an action at . After taking the action the
agent recieves a reward rt . 5

Figure 2.2 Actor Critic Framework An illustration of the actor critic learning
framework. Here a critic update the value function parameters and the
actor updates the policy function parameters according to a gradient
signal from the critic. 8

Figure 2.3 Ladder of Abstraction Sorting solutions in the existing ecosystem
by increasing degrees of abstraction. We ask whether there lies any-
thing higher in this "ladder of abstraction", a term coined by S.I.
Hayakawa in Language in Thought and Action to highlight and con-
trast abstraction within language. We ask whether such an interface
could provide an additional source of insight to the practitioner.

9
Figure 2.4 Spatial Interaction The spatial dimension is one axis of comparison

along which to think about designing tools for insight into the RL
problem. Here the agent (blue) is trying to navigate through a maze
to reach a goal state (green), and can take actions to move around
(up, down, left, right). A simple grid world such as this is already
characterized by a strong spatial influence, which transfers across to
similar problems (e.g. games, driving, robotics). 10

Figure 2.5 Temporal Interaction The temporal dimension is shown here by
visualizing a Markov Decision Process (MDP). Here the agent interacts
with the environment by taking an action at at every timestep t which
causes a state change. 11
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state spaces. (B) Visualizing the action viewport for the Pong en-
vironment [7]. Hovering over instantaneous timesteps dynamically
updates the state viewport (3.1.1) and shows the corresponding ren-
dered image for the selected state. This representation provides the
user with intuition about the agent policy, and could help subsequent
debugging. 13

Figure 3.2 Replay Buffer Viewport Projecting the contents of the replay buffer
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points in the replay buffer dynamically updates the generated state
viewport (3.1.1), and shows the rendered image for the corresponding
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1
INTRODUCT ION

1.1 reinforcement learning (rl)

How might we train a dog to fetch a ball? One way perhaps is to somehow teach the
dog human language, explain the known laws of physics, and then tell it to fetch the
ball. Alternatively, we could show the dog many valid sets of actions, and ask it to
replicate the same actions. This example might seem contrived, but it does highlight the
fundamental difference between two different approaches to pursuing AI. As such, this
latter paradigm of "learning by example" has resulted in many experimental advances
in recent years and is the one we shall focus on in this thesis.

This approach of learning example, machine learning, can be taxonomized in many
different ways (Figure 1.1) based on the interplay between data (e.g. examples), and loss
function (e.g. signal). One such paradigm which was inspired by the field of behaviorist
psychology is reinforcement learning (RL). RL attempts to formalize this process of
training "agents" to maximize a "reward". This "reward" is generated using a function
to incentivize behavior that we care about and penalizes behavior that we wish to
discourage. In comparison to other paradigms of machine learning, where the loss
function is a strong signal to guide model behavior, in the reinforcement learning
setting the reward function is at best a proxy signal to guide the agent towards optimal
behavior. Thus, in many ways, the formulation in this form results in a harder problem
to solve. These notions of "optimality", "reward function", and further technical terms
found later in this chapter will be defined later, but for now, serve as points to anchor
the discussion. For a quick tour of reinforcement learning, we encourage reading these1

guides2, and for a more in-depth coverage we recommend the standard reference [50].

1.2 recent advances

In recent years, systems trained using reinforcement learning have seen impressive
results in applications ranging from games (Atari [31], Go [47], Starcraft [54], DOTA
[35]) to robot manipulation [25]. These advances can be attributed to many different
factors from algorithmic contributions to experimental developments. Chief among
these experimental developments has been the use of deep neural networks within rein-
forcement learning systems as powerful function approximators. These advances are
paralleled in the broader machine learning field where the use of deep neural networks
has fueled many impressive advances due to the ability of these family of functions
to learn high dimensional models from large amounts of data [26]. However, these
rapid advances have come at a resulting cost, namely the sacrifice of interpretability.

1 https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
2 https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html

1
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Figure 1.1: Machine Learning Paradigms Taxonomy One way to think about the different
machine learning paradigms is by contrasting on the presence of labeled data
and a loss function. This leads to a figure as shown that compares the different
approaches: supervised learning, semi-supervised learning, unsupervised learning,
reinforcement learning.

Inferences made using these high dimensional models are often hard to understand
and trust [10].

Visualization systems have played an important role in overcoming these challenges.
Many tools exist for addressing this challenge in the supervised learning setting, which
find usage in tracking metrics [1, 43], generating graphs of model internals [56], and
visualizing embeddings [28]. However, there is no corresponding set of tools for the
reinforcement learning setting. At first glance, it appears we may repurpose existing
tools for this task. However, we quickly run into limitations that arise due to the intent
with which these tools were designed. Reinforcement learning (RL) is a more interactive
science [32] compared to supervised learning, due to a stronger feedback loop between
the researcher and the agent. Whereas supervised learning involves a static dataset,
RL often entails collecting new data. To fully understand an RL algorithm, we must
understand the effect it has on the data collected. Note that in supervised learning, the
learned model does not affect a fixed dataset.

1.3 visualization systems

At their core visualization systems, consist of two components: representation and
interaction. Representation is concerned with how data is mapped to a representation
and then rendered. Interaction is concerned with the dialog between the user and the
system as the user explores the data to uncover insights [57]. Though appearing to
be disparate, these two processes have a symbiotic influence on each other. The tools
we use for representation affect how we interact with the system, and our interaction
affects the representations that we create. Thus, while designing visualization systems,
it is important to think about the application domain from which the data originates,
in this case, reinforcement learning.

The efficacy of the resulting system can be evaluated along the following three
dimensions, as proposed by Beaudouin-Lafon [6], and adapted here for relevance:

- descriptive power: the ability to describe existing representations.
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(a) Representative Tool (Tensorboard) (b) Vizarel

Figure 1.2: Tool Comparison Comparing between a representative tool for debugging RL in the
existing ecosystem (L), and Vizarel (ours) (R), highlights the difference in design
intent between both systems. L Illustrates the plotting of scalar metrics such as
policy loss or mean reward. R Illustrates an interactive interface designed to easily
show the correspondence between scalar metrics and states (images). The points
here are individual states in the replay buffer and the interactive scalar plot is a
single trajectory, which we explain in further detail in Chapter 3.

- evaluative power: the ability to analyze alternative representations.

- generative power: the ability to generate new representations.

Figure 1.2 illustrates the differences between a representative tool from the existing
ecosystem and the tool we have designed. The former was designed for the supervised
learning setting and has shown promise for use in reinforcement learning. However, we
argue that there exists a large space of unexplored interfaces that could help aid the
process of debugging RL algorithms and trained policies. We explore one such solution
that is designed around the spatial and temporal aspects of training RL agents. This
approach might help increase understanding, interpretability, and thereby serve as a
complement to tools in the existing ecosystem.

1.4 prior work

As stated earlier, existing visualization tools for machine learning primarily focus on
the supervised learning setting. However, the process of designing and debugging
RL algorithms might benefit from a different set of tools, that can complement the
strengths and overcome the weaknesses of offerings in the current ecosystem. In the rest
of this section, we highlight aspects of prior work upon which our system builds. To the
best of our knowledge, there do not exist visualization systems built for interpretable
reinforcement learning that effectively addresses the broader goals we have identified.
There exists prior work, aspects of which are relevant to features which the current
system encapsulates, that we now detail.
Visual Interpretability

Related work for increasing understanding in machine learning models using visual
explanations includes: feature visualization in neural networks [33, 48, 60], visual
analysis tools for variants of machine learning models [21, 22, 24, 49, 58], treating exist-
ing methods as composable building blocks for user interfaces [34], and visualization
techniques for increasing explainability in reinforcement learning [5, 30, 42]
Explaining agent behavior
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There exists related work that tries to explain agent behavior. Amir and Amir [3]
summarize agent behavior by displaying important trajectories. Waa et al. [55] introduce
a method to provide contrastive explanations between user derived and agent learned
policies. Huang et al. [18] show maximally informative examples to guide the user
towards understanding the agent objective function. Hayes and Shah [17] present
algorithms and a system for robots to synthesize policy descriptions and respond to
human queries.
Explainable reinforcement learning

Puiutta and Veith [36] provide a survey of techniques for explainable reinforcement
learning. Related work in this theme includes [9, 13, 20, 29, 37, 39, 46]

Similar to Amir and Amir [3], Huang et al. [18], and Waa et al. [55], this work is
motivated by the aim to provide the researcher with relevant information to explore
a possible space of solutions while debugging the policy. Similar to Hayes and Shah
[17], we present a functioning system that can respond to human queries to provide
explanations. However, in contrast, the interactive system we present is built around
the RL training workflow, and designed to evolve beyond the explanatory use case
to complement the existing ecosystem of tools [1, 43]. In contrast to the techniques
surveyed in Puiutta and Veith [36], the contribution here is not on any single technique
to increase interpretability, but a whole suite of visualizations built on an extensible
platform to help researchers better design and debug RL agent policies for their task.

1.5 contributions of this thesis

The rest of this thesis describes our attempt at constructing Vizarel 3, an interactive
visualization system to help RL researchers better understand algorithms and debug
RL policies, and help RL researchers pose and answer questions of this nature. Towards
these goals, we identify features that an interactive system for interpretable reinforce-
ment learning should encapsulate and build a prototype of these ideas. We complement
this by providing a walkthrough example of how this system could fit into the RL
debugging workflow and be used in a real scenario to debug a policy.

Using existing tools, we can plot descriptive metrics such as cumulative reward,
TD-error, and action values, to name a few. However, it is harder to pose and easily
answer questions such as:
- How does the agent state-visitation distribution change as training progresses?
- What effect do noteworthy, influential states have on the policy?
- Are there repetitive patterns across space and time that result in the observed agent

behavior?
These are far from an exhaustive list of questions that a researcher may pose while

training agent policies, but are chosen to illustrate the limitations created by our current
set of tools that prevent us from being able to easily answer such questions.

3 Vizarel is a portmanteau of visualization + reinforcement learning.



2
BACKGROUND

As alluded to in the introduction, reinforcement learning is a machine learning paradigm
that formalizes the notion of training agents that interact with an environment. For a
more in depth coverage of the subject, we refer the reader to [50]. In this chapter, we
provide a brief primer and introduce notation 1 that is used in later parts of this thesis.

2.1 rl preliminaries

Figure 2.1: RL Framework Figure illustrating the reinforcement learning framework. The agent
interacts with the environment at every timestep t by observing a state st and taking
an action at . After taking the action the agent recieves a reward rt .

2.1.1 States, Actions, Rewards

??
The main objects in RL are the agent and the environment. The environment is the

world external to the agent. At every timestep t the agent interacts with the environment,
observes a state st, and decides to take an action at after seeing this observation. The
environment is updated after the agent takes an action at, but may evolve independently
depending on the specific situation.

1 This section borrows from the excellent online resources that provide a quick tour of reinforcement
learning.

5
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Conditional on this action at, the environment returns a reward rt which provides
the agent with a signal regarding the quality of its action. The goal of the agent is to
maximize the cumulative reward, also known as the return, and is what we look at next.

2.1.2 Returns

The return (G) is the cumulative sum of rewards (R) receieved by the agent.

Gt = Rt+1 +γRt+2 + ... =
∞∑
k=0

γkRt+k+1, (2.1)

where the subscript t is used to indicate timesteps, γ is a scalar quantity called the
discount factor ∈ [0,1], that is used to control the time horizon over which rewards are
meaningful.

Intuition: A relatively large discount factor, incentivizes the agent to care about
the long term consequences of its actions, whereas a relatively small discount
factor promotes hedonistic behavior. You can tweak this “window of importance”
yourself by adjusting γ , and observing its’ effect on the sum of the geometric
series, which is 1

1−γ . For example, setting γ = 0.99, yields a window of 100 frames.

2.1.3 Policies

The policy function is what encapsulates the behavior of the agent. The simplest form
of a policy could even be a lookup table that maps states to actions. One step up
in complexity could be a deterministic function that maps states to actions such as
at = µ(st).
The policy function in its most general form (currently) is a stochastic function such as:
at ∼ π(∗|st).
Note, the policy function is often learnt using parameterized functions (such as a neural
network), which is denoted by using a subscript such as θ or φ

at = µθst (2.2)

at ∼ πθ(∗|st) (2.3)

Intuition: Think of the policy as a function returning a response to the following
question: Which action should I take after seeing this state?

2.1.4 Trajectories

A trajectory is a sequence of states and actions the agent takes while interacting with
the environment: τ = (s0, a0, s1, a1, ..., st , at)
The initial state is sampled from the start-state distribution: s0 ∼ ρ0(∗)
State transitions (how the environment state changes) can occur either due agent actions,
or due to an natural evolution of the environment, and can be either deterministic (2.4)
or stochastic (2.5)
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st+1 = f (st , at) (2.4)

st+1 ∼ f (∗|st , at). (2.5)

2.1.5 Maximizing Expected Return

The goal of an agent trained within the RL framework is to maximize return. With a
stochastic policy and/or a stochastic environment, this turns into a problem of maxi-
mizing the expected return. The probability of observing the given trajectory under the
current policy is:

P (τ |π) = ρ0(s0)
T−1∏
t=0

P (st+1|st , at)π(at |st) (2.6)

(2.7)

where T is the length of the trajectory. The expected return is then

R(π) =
∫
τ
P (τ |π)G(τ)dτ = Eτ∼π[G(τ)] (2.8)

(2.9)

The goal of the agent is then to maximize this expected return

π∗ = argmax
π
R(π) (2.10)

where π∗ is the optimal policy.

2.1.6 Value Functions

The value of a state is defined as the expected return the agent would receive if it follows
the current policy π forever after the current state st. Formally the value is specified as:

V π(s) = Eτ∼π[G(τ)|s0 = st]. (2.11)

A related quantity is the state-action value function which specifies the expected return
if the agent takes an action at in state st and then follows the current policy π forever
after. Formally the state-action value function is specified as:

Qπ(s,a) = Eτ∼π[G(τ)|s0 = st , a = at]. (2.12)

In the case of following the optimal policy (π∗), the corresponding value function and
state-action value function are denoted by V ∗ and Q∗ respectively, where the optimal
policy is the policy that maximizes the expected return

max
π

Eτ∼π (2.13)
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Figure 2.2: Actor Critic Framework An illustration of the actor critic learning framework. Here
a critic update the value function parameters and the actor updates the policy
function parameters according to a gradient signal from the critic.

Intuition: You can think of both the value functions as the agent learning a
model of the world. e.g. how much reward am I likely to accumulate after seeing
this state (value function)? how much reward am I likely to accumulate after
(randomly or deterministically) taking this action, and then strictly following my
policy (state-action value function)?

2.1.7 TD Error

TD Learning is a class of RL algorithms that learn the value function by bootstrapping
from a current estimate of the value function. This is done by updating the value
function V towards an estimated return (TD Target). The magnitude of the updates is
controlled by a learning rate α:

V (st)← V (st) +α(rt+1 +γV (st+1)−V (st)) (2.14)

where the quantity (rt+1 +γV (st+1)−V (st)) is known as the TD Error.

Intuition: The TD error is a measure of how “far off” your current value function
estimate is from the true value function. As such it is a proxy to the model
prediction error, where the model the agent has learnt is of the reward it expects
to receive after seeing the current state.

2.2 actor critic framework

The actor critic framework is a class of algorithms where we learn both the value
function (or state-action value function), and the policy function. Methods belonging
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to this framework can have update rules and nuances which differentiate them from
each other, but are bound by this principle of learning both the value function and the
policy function.

The following are general update rules for learning both functions
Actor

θ← θ +αθQ(s,a;w)∇θ lnπ(a|s;θ) (2.15)

Critic

Gt:t+1 = rt +γQ(s′ , a′;w)−Q(s,a;w) (2.16)

w← w+αwGt:t+1∇wQ(s,a;w) (2.17)

where,

θ : actor parameters,w : critic parameters,

γ : discount factor,αθ : actor learning rate,

αw : critic learning rate,G : return

2.3 ladder of abstraction

Figure 2.3: Ladder of Abstraction Sorting solutions in the existing ecosystem by increasing
degrees of abstraction. We ask whether there lies anything higher in this "ladder of
abstraction", a term coined by S.I. Hayakawa in Language in Thought and Action
to highlight and contrast abstraction within language. We ask whether such an
interface could provide an additional source of insight to the practitioner.

As briefly covered in the introduction, there currently exist tools that are used to
debug RL algorithms and policies trained using RL. It is useful to think about how
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these tools relate to each other, and where they lie in the space of all possible solutions.
One way to think about this is to sort them by increasing degrees of abstraction. At
the lowest level, are tools such as Tensorboard [51] which are commonly used to plot
scalar metrics. One step above are video logs, which are often used to visualize the
exact sequence of actions being taken by the agent

Arranging these by increasing degrees of abstraction leads to a figure such as that
shown in Figure 2.3. Visualizing existion solutions in this space leads one to question
whether the tools we’ve adopted from the supervised learning setting are a good fit
for the RL setting. Could there exist better tools that provide more insight into the
problem? Could these tools serve as complements to tools in the existing ecosystem?

2.4 understanding the rl problem

To think about what such a solution might look like, it’s important to identify which
attributes of the RL problem are unique relative to other paradigms of machine learning.
We idenfity one such dimension of comparison that we think leads to nice insights, but
there might exist others.

2.4.1 Spatial Interaction

Figure 2.4: Spatial Interaction The spatial dimension is one axis of comparison along which to
think about designing tools for insight into the RL problem. Here the agent (blue)
is trying to navigate through a maze to reach a goal state (green), and can take
actions to move around (up, down, left, right). A simple grid world such as this is
already characterized by a strong spatial influence, which transfers across to similar
problems (e.g. games, driving, robotics).

The RL framework is often characterized by a strong spatial influence, due to the
notion of an agent interacting with an environment. This environment is frequently
a simulation of the real world or a game environment which comes packaged with a
notion of dimensions relative to which position is measured 2. Of course this spatial

2 Note: We intentionally use the more abstract terms of (identifying) dimensions and (taking) measurements
to highlight connections to what are very often the first steps carried out when interacting with physical
systems.
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interaction is by no means a prerequisite. For example, there exist scenarios where
a policy trained using RL is being used for healthcare assitance. Another example is
for ad caption generation it is unclear whether there exists a spatial component at all.
However, note that even in these cases there exists dimensions and measurements along
these dimensions, and thus we can easily repurpose the same ideas.

2.4.2 Temporal Interaction

Another dimension which is common to nearly all RL setups, is that of temporal
interaction, which is formulated in the original RL framework ??. This implies that
there is a strong influence of time at every step and thus should be an important
attribute to consider when designing a tool specifically for the RL problem.

We can then fuse these two axes of comparison (spatial and temporal) to arrive at
interactions which lie in between these two (e.g. spatio-temporal). These concepts are
used later in Chapter 3, when explaining the system we’ve designed.

Figure 2.5: Temporal Interaction The temporal dimension is shown here by visualizing a
Markov Decision Process (MDP). Here the agent interacts with the environment by
taking an action at at every timestep t which causes a state change.

These background concepts cover most of what we’ll need to understand and contex-
tualize the ideas from the later chapters.



3
VIZAREL : INTERACT IVE V I SUAL IZAT IONS FOR RL

This section describes how our interactive visualization system (Vizarel), is currently
designed. The system offers different views that allow the user to analyze agent policies
along spatial and temporal dimensions (described later in further detail). The tool
consists of a set of viewports, that provide the user with different representations of the
data, contingent on the underlying data stream. Viewports are generated by chaining
together different visualization elements, such as:

1. image buffers: visualize observation spaces (image and non-image based)

2. line plots: visualize sequentially ordered data, such as action values or rewards
across time

3. scatter plots: to visualize embedding spaces or compare tensors along specified
dimensions

4. histograms: visualize frequency counts of specified tensors or probability distribu-
tions

The current implementation provides core viewports (detailed further), but can easily
be extended by the user to generate additional viewports to explore different visualiza-
tion ideas. This design naturally leads to the idea of an ecosystem of plugins that could
be integrated into the core system, and distributed for use among a community of users
to support different visualization schemes and algorithms. For example, the user could
combine image buffers and line plots in novel ways to create a viewport to visualize the
the state-action value function [50]. In the rest of this section, we provide details and
distinguish between two types viewports currently implemented in Vizarel: temporal
viewports and spatial viewports. Discussion on viewports beyond these has been de-
ferred to the appendix. Comprehensive information on adding new viewports is beyond
the scope of the thesis, but has been described at length in the system documentation1.

3.1 temporal views

Temporal views are oriented around visualizing the data stream (e.g. images, actions,
rewards) as a sequence of events ordered along the time dimension. We have imple-
mented three types of temporal viewports: state viewports, action viewports, and
reward viewports, which we now detail.

12
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Figure 3.1: State + Action Viewports (T) Visualizing the state viewport for the inverted pen-
dulum task. This representation overlayed with another state viewport similar to (b),
provides the user with better intuition about the correspondence between states and
actions for non image state spaces. (B) Visualizing the action viewport for the Pong
environment [7]. Hovering over instantaneous timesteps dynamically updates the
state viewport (3.1.1) and shows the corresponding rendered image for the selected
state. This representation provides the user with intuition about the agent policy,
and could help subsequent debugging.

3.1.1 State Viewport

For visualization, we can classify states as either image-based or non-image based. The
type of observation space influences the corresponding viewport used for visualization.
We provide two examples that illustrate how these differing observation spaces can
result in different viewports. Consider a non-image based observation space, such as
that for the inverted pendulum task. Here, the state vector ~s = {sin(θ),cos(θ), θ̇}, where
θ is the angle which the pendulum makes with the vertical.

We can visualize the state vector components individually, which provides insight
into how states vary across episode timesteps (Figure 3.1). Since images are easier for
humans to interpret, we can generate an additional viewport using image buffers, that
tracks changes in state space to the corresponding changes in image space. Having this
simultaneous visualization is useful since it now enables us to jump back and forth
between the state representation which the agent receives, and the corresponding image
representation, by simply hovering over the desired timestep in the state viewport.

For environments that have higher dimensional state spaces, such as that of a robotic
arm with multiple degrees of freedom, we can visualize individual state components.
However, since this may not be intuitive, we can also generate an additional viewport
to display an image rendering of the environment to help increase interpretability.

3.1.2 Action Viewport

The action viewport is used to visualize how the actions chosen by the agent vary across
the episode (Figure 3.1). Consider the Pong environment [7], where the action a at
timestep t, corresponds to the direction in which the paddle should move. A visualiza-
tion such as the one shown in Figure 3.1 can be generated to show the correspondence

1 Vizarel is planned to be released as an open source tool
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between actions and states. This allows the user to easily identify states marked by
sudden action transitions, and thus aid debugging. This idea can easily be extended to
agents with stochastic actions, where we could generate a viewport using histograms to
visualize the change in action distribution over time.

For higher dimensional action spaces we can use a technique similar to the one
used for state viewports, to generate multiple viewports that track individual action
dimensions, for example joint torques for a multilink robot.

3.1.3 Reward Viewport

The reward viewport is used to visualize how the rewards received by an agent vary
across the episode. A user can look at the reward viewport together with the state
viewport to understand and find patterns across state transitions that result in high
reward. For many environments, the reward function consists of components weighted
by different coefficients. These individual components are often easier to interpret
since they are usually correspond to a physically motivated quantity tied to agent
behaviors that we wish to either reward or penalize. For example, in autonomous
driving environments the reward can be formulated as a function of speed, collision
penalties, and the distance from an optimal trajectory [2].

In situations where we have access to these reward components, we can generate
multiple viewports each of which visualize different components of the reward function.
The viewports discussed so far can be combined to provide the user more insight into
the correspondence between states (state viewport), actions (action viewport), and the
components of the reward function (reward viewport) that the agent is attempting to
maximize. Such a visualization could help alert researchers to reward hacking [4].

3.2 spatial views

Spatial views are oriented around visualizing the data stream as a spatial distribution of
events. We have implemented three types of spatial viewports: replay buffer viewports,
distribution viewports, and trajectory viewports, that we now describe.

3.2.1 Replay Buffer Viewport

The replay buffer stores the agent’s experiences et = (st , at , rt , st+1) in a buffer B =
{e0, e1, ..., eT }∀i ∈ [0,T ]. For off-policy algorithms, the replay buffer is of crucial im-
portance, since it effectively serves as an online dataset for agent policy updates [11]. In
the supervised learning setting, there exist tools2 to visualize datasets, that provide the
user with an intuition for the underlying data distribution. The replay buffer viewport
aims to provide similar intuitions for the reinforcement learning setting by visualizing
the distribution of data samples in the replay buffer.

Since the individual elements of the replay buffer are at least a four-dimensional
vector et, this rules out the possibility of generating viewports to visualize data in
the original space. We can instead visualize the data samples by transforming the
points [28] to a lower-dimensional representation. This technique helps visualize the
distribution of samples in the replay buffer, which is a visual representation of the
replay buffer diversity [8].

2 https://github.com/PAIR-code/facets
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Figure 3.2: Replay Buffer Viewport Projecting the contents of the replay buffer into a 2D space
for easier navigation, and clustering states based on similarity. This viewport pro-
vides a visual representation for replay buffer diversity and can help in subsequent
debugging. Hovering over points in the replay buffer dynamically updates the gen-
erated state viewport (3.1.1), and shows the rendered image for the corresponding
state (animation depicted using overlay).

The size of the replay buffer can be quite large [61], which can lead to difficulties
while navigating the space of points visualized in the replay buffer viewport. To nudge
[52] the user towards investigating samples of higher potential interest, we scale the
size of points in proportion to the absolute normalized TD error [50], which has been
used in past work [44] as a measure of sample priority during experience replay.

Moreover, the replay buffer viewport can be combined with the state viewport to
simultaneously visualize an image rendering of the state, by tracking changes as the
user hovers over points in the replay buffer viewport (Figure 3.2).

3.2.2 Distribution Viewport

Figure 3.3: Distribution Viewport Using the lasso tool to select a group of points (dashed gray
line) in the replay buffer viewport (3.2.1), dynamically updates (dashed red line) the
distribution viewport (3.2.2) by computing and plotting the distribution of values
for the specified tensor (e.g. actions or rewards).

The distribution viewport (Figure 3.3) complements the replay buffer viewport by
allowing the user to select clusters of data samples and ask questions regarding the
distribution of action, rewards, and other relevant tensors for the selected group of
points.

Using the distribution viewport, users might ask questions like:
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Figure 3.4: Trajectory Viewport Selecting points in the replay buffer viewport (3.2.1), causes
the trajectory viewport (3.2.3) to dynamically update and plot the absolute normal-
ized TD error values over the length of the trajectory. Hovering over points in the
trajectory viewport, allows the user to view a rendering of the state corresponding
to that timestep in the generated state viewport (3.1.1).

- What is the distribution of actions the agent took for these groups of similar
states?

- What is the distribution of rewards for the state action transitions?

- What is the overall diversity of states which the agent has visited?

If the updates to the agent policy result in better task performance, the entropy of
the action distribution should reduce over time (discounting any external annealing
caused due to exploration), which can be easily verified through this viewport. In the
limit, the distribution of actions for a group of similar points should converge to a
Dirac distribution, since the optimal policy for an infinite horizon discounted MDP is a
stationary distribution [38]. In practice, observing the distribution converging around
the mean value could indicate a promising policy training experiment.

For multi-dimensional action spaces, the viewport could be repurposed to display the
variance of the action distribution, plot different projections of the action distribution,
or use more sophisticated techniques such as projection pursuit [19].

3.2.3 Trajectory Viewport

A fusion of the components from the spatial and temporal views leads to a spatio-
temporal view, an example of which is the trajectory viewport (Figure 3.4). The replay
buffer viewport alone visualizes the spatial nature of the points in the replay buffer
but does not display the temporal nature of trajectories. Being able to switch between
spatial and temporal views is crucial when understanding and debugging policies. This
is supported by selecting points in the replay buffer viewport, which then retrieves the
corresponding trajectory.

The X coordinate in the trajectory viewport represents the timestep, and the Y
coordinate is the absolute TD error, normalized to lie within [0,1]. Hovering over points
in the trajectory viewport retrieves an image rendering of the corresponding state in
the state viewport. This correspondence enables the user to easily navigate through and
visualize action sequences in the trajectory that consistently have a high TD error, thus
speeding up debugging of policies.
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3.2.4 Tensor Comparison Viewport

For environments that have higher dimensional action spaces, it is hard for the user to
understand how neighboring points in the replay buffer viewport differ. This becomes
especially relevant for diagnosing clusters of points that have a higher TD error. The
tensor comparison viewport (Figure 3.5) enables the user to easily select points and
then compare them along the dimensions of interest, which for example could be
actions. Dimensions that have a standard deviation beyond a specified threshold are
automatically highlighted, which enables the user to focus on the dimensions of interest.

Figure 3.5: Tensor Comparison Viewport Selecting points (dashed green line) in the replay
buffer viewport (3.2.1), and generating (dashed red line) the tensor comparison view-
port, allows the user to compare tensors (e.g. actions or states), where dimensions of
higher variance are automatically highlighted. This could lead to faster debugging in
environments where each dimension corresponds to physically intuitive quantities.

3.3 constructing viewports

We describe how a user could create a new viewport through an example. However, we
defer an extended discussion to the system documentation, since reading the source
code and give the user more insight. As mentioned in Section ??, viewports are generated
by chaining together different visualization elements. Various viewports we introduced
along with the visualization elements they make use of are:

1. image buffers: state viewport
2. line plots: action viewport, reward viewport, trajectory viewport
3. scatter plots: replay buffer viewport
4. histograms: distribution viewport
Note that these primitives are not fixed and are bound to change if the creation of

different viewports necessitates their expansion. However, we’ve found them to be a
good starting point to provide the minimal functionality required to construct new
viewports. For example the construction of a saliency map viewport, could be done using
an image buffer and a line plot.

There exist utilities in the system to handle the rollout of agent policies, and storage
of generated metadata. However, the user would still need to provide code to gener-
ate saliency maps3. Once the metadata has been generated, the user specifies which
viewports to generate (e.g. core viewports and custom viewports) along with a visual
layout for the dashboard. The system then generates an interactive interface with the

3 for which there exist open source tools
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Figure 3.6: Spatio-Temporal Interaction Visualizing the replay buffer viewport (3.2.1) (spatial
view), and trajectory viewport (3.2.3) (temporal view), along with overlays to inde-
pendently track image renderings of states in both as a state space viewport (3.1.1).
Navigating between these viewports allows the user to observe both agent spatial
and temporal behavior, which could facilitate better insights during debugging.

specified viewports and layout, that the user can use to debug the agent policy and
perform further analysis.

This viewport could further be incorporated as a plugin or extension to the core
system and distributed to a community of users in the future. The exact details for this
are not concrete yet, since we expect there to emerge a robust process through iterative
design changes, as the tool finds broader usage.

3.4 walkthrough of debugging agents using vizarel

Figure 3.7: Vizarel Workflow Diagram Typical steps during policy debugging, and how the
designed system fits into this workflow. The system takes as input a policy saved
during a checkpoint and evaluates the policy through a specified number of rollouts.
This data is then visualized through viewports specified by the user, that are used
for debugging the policy through making guided changes.

We now detail an example workflow of how the system can be used in a real scenario.
Figure 3.7, illustrates how Vizarel fits into an RL researcher’s policy debugging work-
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Figure 3.8: Comparing TD error along an agent trajectory Visualizing the trajectory viewport
(3.2.3), allows the user to compare the TD error at different timesteps along the
trajectory, along with the associated state viewport (3.1.1). An example interaction
is visualized here by hovering over regions of potential interest in the trajectory
viewport. This simultaneous view allows the user to easily compare and draw
similarities between action sequences which cause large changes in TD error.

flow. Training a successful agent policy often requires multiple iterations of changing
algorithm hyperparameters.

To speed up and increase the intuitiveness of this process, the researcher can load
a stored checkpoint of the policy into the system, and evaluate a specified number
of policy rollouts. Empirically, we’ve found that there should be enough rollouts to
ensure sufficient coverage of the state space, since this influences the scope of questions
which can be posed during debugging (e.g. through the replay buffer viewport). These
rollouts can then be visualized and interacted with through specifying the required
data streams and generating different viewports.

Figure 3.6, shows an example of replay buffer, state, and trajectory viewports gener-
ated for a policy trained using DDPG on the HalfCheetah task. The high variance in
the TD error suggests the presence of critic overestimation bias [53], which could be
remedied by using algorithms known to reduce the impact of this issue [12, 16]. Figure
3.8 shows how the user can compare the TD error along the agent trajectory. Hovering
over regions of potential interest in the trajectory viewport allows the user to find action
sequences that cause high variance in the TD error. A similar technique could be used
to visualize clusters of states in the replay buffer space with high TD error (Figure 3.2).
This approach could enable the user to identify patterns in states across space or time
that persistently have high TD error, and design methods to mitigate this [4].

Another approach the user could take is to generate a distribution viewport (Figure
3.3), and identify the distribution of actions in the vicinity of states with a high TD error.
If similar states persistently have a higher action and/or reward variance, this suggests
that the usage of variance reduction techniques could help learning [41, 45]. Once
promising avenues for modification have been identified, the user can make guided
changes, and retrain the policy.
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3.5 algorithms

Algorithm 1: Procedure to generate samples for the replay buffer viewport
Result: Data samples from replay buffer transformed from original space R

n to
lower dimensional space R

d , where n >> d
Load data samples di from replay buffer into memory;
Where, di = (si , ai , ri , si+1), i ∈ (0,T ) and T is the episode timestep;
for i=0; i < T; i++ do

// create data matrix from replay buffer samples;
data[i] = di ;

end
transform = compute_transform(data, type);
// where, type ∈ [PCA, TSNE, UMAP]
reduced_points = transform(data);

Algorithm 2: Procedure to compute visual size of data samples in the replay
buffer viewport

Result: Visual size of data samples in replay buffer viewport transformed in
proportion of their influence on the agent policy

Load data samples di from replay buffer into memory;
Where, di = (si , ai , ri , si+1), i ∈ (0,T ) and T is the episode timestep;
Load sample metadata mi into memory;
Where, mi stores the TD error for each sample (for relevant algorithms) ;
for i=0; i < T; i++ do

data[i] = mi ;
end
d_min = min(data);
d_max = max(data);
for i=0; i< T; i++ do

// p[i] stores the normalized TD error value, and (c_min, c_max) is the range to
which values are mapped;

p[i] = p[i]−d_min
d_max−d_min × (c_max − c_min) + (c_min);

// r[i] stores the radius of the point to be plotted in the replay buffer viewport ;

r[i] =
√
p[i]
π ;

end

3.6 alternate environments: hard exploration

We’ve also experimented with using this tool for hard-exploration tasks such as Mon-
tezuma’s Revenge. Figure 3.9, shows how the replay buffer viewport can be used to
visualize the distribution of data samples in the replay buffer. Since, the observations
returned from the environment are images, we extract the embeddings computed by the
feature extraction model in the agent policy, and use these for the projection technique
described in the Appendix (Algorithms).
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Figure 3.9: Visualizing the replay buffer for hard exploration tasks Tasks such as Mon-
tezuma’s revenge are classic examples of hard exploration tasks. Here we show
how the replay buffer viewport, can help visualize the distribution of data samples
in the replay buffer.

3.7 user study

We conducted a user study4 from RL users for feedback and an extended evaluation
of potential use cases a tool such as the one described and implemented in this paper
would serve.

These questions were of both a numerical and subjective type. We now list both types
along with preliminary results

3.7.1 Numerical questions

• On a scale of 0-10, do you think Vizarel would help you identify bugs in your RL
algorithms? Average: 7.5

• On a scale of 0-10, do you think Vizarel would help you identify improvements
in your RL algorithms? Average: 7.0

• On a scale of 0-10, do you think Vizarel would help you understand whether your
RL algorithms are working as intended? Average: 8.0

3.7.2 Subjective questions

• Are there specific settings where you think this tool might help answer questions
that you might otherwise not easily been able to?

– To show the effects of changes in reward function coefficients

– Surfacing important points in the agent trajectory history

• Which features do you think are missing and would be a useful addition to have?

– Add the capability to search over the replay buffer viewport and filter events
based on search criteria.

– Provide a documented approach to load in agent policies

4 Results from this are preliminary, as the survey is still in progress
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– More details on how to create plugins

– Display agent trajectories in the replay buffer viewport

Future work along this direction would include creating test scenarios for debugging,
and running an A/B test for users, contrasting their experience with existing tools vs
the proposed tool along dimensions of efficacy in debugging RL algorithms.

3.8 performance

We’ve run measured preliminary performance metrics to help provide insight into how
much overhead running this system would create (based on v4 of the system). These
numbers were collected for a visualization of an agent trained using DDPG on the
HalfCheetah-v2 task, about 35% of the way to task completion. The vizarel interface
was generated on a machine with an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
processor, with a 4TB HDD, and 128 GB RAM.

Tasks Time

Generate Viewports 45 sec

Load Dashboard 5 sec

Policy Rollouts 2 minutes

Logging Overhead Fraction (Relative to Tensorboard) 1

Note that the policy rollout time is conditional on the length of the episode trajectory.
These were collected for the HalfCheetah-v2 task.

3.9 future work

In this section, we introduced a visualization tool, Vizarel, that helps interpret and
debug RL algorithms. Existing tools which we use to gain insights into our agent policies
and RL algorithms are constrained by design choices that were made for the supervised
learning framework. To that end, we identified features that an interactive system for
debugging and interpreting RL algorithms should encapsulate, built an instantiation of
this system which we plan to release as an open source tool, and provided a walkthrough
of an example workflow of how the system could be used.

There are multiple features under development that contribute towards the core
system. One feature is the integration of additional data streams such as saliency maps
[15] to complement the state viewport. Another is designing the capability to use the
system in domains that lack a visual component, for example in healthcare [59] or
education [40]. An extension is to add search capabilities that allow the user to easily
traverse, query, and identify regions of interest in the replay buffer viewport.

Vizarel suggests a number of avenues for future research:

1. We hypothesize that it could help design metrics that better capture priority
during experience replay [44].

2. It could help the researchers create safety mechanisms early on in the training
process through identifying patterns in agent failure conditions [4].

3. Another possible research direction this tool catalyzes is the construction of
reproducible visualizations through plugins integrated into the core system.
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We anticipate that the best features yet to be built will emerge through iterative feed-
back, deployment, and usage in the broader reinforcement learning and interpretability
research communities.



4
VI SUAL IZ ING ACTOR CR IT IC LEARNING DYNAMICS

As described in Chapter 3, the system designed is built with extendability in mind.
These extensions can take the form of simple visualizations or can emerge through
more involved research efforts. In this chapter we describe an instance of the latter.

4.1 motivation

Optimization algorithms for machine learning have often made use of geometric in-
sights to design more optimal convergence behavior. These algorithms are often used
to optimize the behavior of complex models that exist in extremely high dimensional
spaces. However, humans aren’t able to easily visualize higher dimensional spaces, and
translate their insights from everyday lower dimensional space to the spaces in which
these models exist. Hence, in recent years we’ve witnessed a multitude of techniques
that try to address this problem. Recent work has even made inroads into attempting to
visualize the nature of this higher dimensional loss landscape.

Thus, since optimization algorithms are often highly tied to geometry, understanding
the geometry underlying the optimization problem can lead to better insights, and
potentially better priors. Extending this claim to the reinforcement learning (RL)
framework, we argue that understanding the geometry of the RL could lead to better
optimization algorithms. To do so, we must first gain insights into the difficulty of the
RL optimization problem.

4.2 difficulty of optimization

Unlike the supervised learning setting, where the loss function provides a strong signal
for gradient updates, the reward function in the RL framework is at best a weak proxy to
encourage positive behavior, which adds to the difficulty of the optimization problem.

However even for the RL setting, the difficulty of the optimization lies on a continuum.
For algorithms such as REINFORCE, the loss function doesn’t change. For deep Q
learning, with target networks, the loss function is non stationary but changes slowly
(e.g. every k timesteps). On the far end of the spectrum, is the actor critic formulation,
where the loss function changes at every timestep. One proxy measure we propose
to gain insights into the complexity of the optimization is to look at the variance of
gradient updates across time for similar states under these different algorithms.

As suggested by the figure, the actor critic optimization problem lies further along
the difficulty continuum. This makes sense considering that REINFORCE is closer to the
supervised learning framework, whereas algorithms in the actor critic family are more
closely related to bilevel optimization or two player games such as that of generative
adversarial networks. Despite this difficulty, recent research has shown RL agents

24
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Figure 4.1: Plotting increasing optimization difficulty Figure showing different RL algorithms
/ frameworks in an increasing order of optimization difficulty. REINFORCE (also
known as Monte-Carlo Policy Gradient), has a fixed loss function. Deep Q-learning
is trained with a target network that is updated every k timesteps, where k is a
user defined hyperparameter. In the Actor Critic framework, the loss function is
influenced by the critic, which is updated at every timestep.

trained with the actor critic framework to display remarkable performance across a
suite of benchmark tasks. However, actor critic algorithms suffer with stability issues
during training, a phenomenon which is remedied with a host of different techniques.

We ask, whether these drawbacks are to some degree a function of not having geo-
metric insight into the nature of the actor critic optimization problem. Through the
proceeding sections, we seek to impart additional clarity into the nature of the actor
critic loss landscape and how this affects the learning algorithm.

4.3 prior work

4.3.1 Two Player Games

As shown in past work [23], the actor critic family of algorithms are a special case
of the broader bilevel optimization framework, examples of which are GANs. There
are striking parallels between actor critic (AC) optimization and GANs. In the GAN
formulation, the generator network optimizes a loss defined by the discriminator
network, whereas in the AC framework, the actor network optimizes a policy with
respect to a value function learnt by the critic network.

Here the critic plays the role of the loss function, which defines the loss landscape
over which the actor optimizes the policy. However, this optimization is done over
extremely high dimensional parameter spaces, which makes it difficult to easily gain
insight into the nature of the optimization problem.

4.3.2 Loss Landscape

Recent work has made inroads into visualizing the loss landscape of neural networks
in the supervised learning setting. We apply similar techniques to compute the loss
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Figure 4.2: Parallels between Actor Critic and GANs Figure highlighting the similarities be-
tween the actor critic framework and generative adversarial networks. In the GAN
formulation, the generator network optimizes a loss defined by the discriminator
network, whereas in the AC framework, the actor network optimizes a policy with
respect to a value function learnt by the critic network.

landscape for actor critic optimization, where the loss function is non-stationary and in
fact changes at every timestep.

As the visualization suggests, the optimization problem is much harder than the
supervised learning setting, where the landscape does not change over time, due to
a fixed loss function. Even for the supervised learning setting, the ease of training is
dependent on network architecture, optimization algorithm, initialization, and many
other design choices. In the RL setting, there exist many proposed techniques to increase
stability of training including: target networks, entropy regularization, learning rates
(typically much smaller in RL than in ML), action noise, parameter noise, Double DQN,
Dueling DQN, TD3 min Q trick, Gradient clipping.

Visualization schemes such as that shown in Figure 4.3, provide a means for us to
gain further insight into how these proposed factors affect the loss landscape, and thus
the difficulty of the optimization problem. In the past such schemes have been used to
visualize 1D and 2D projections of loss functions for supervised learning. The technique
we use is closely related to this prior work and is what we briefly survey for context
next.

4.3.2.1 1D Loss Visualization

The basic algorithm here as described in [14] is:

1. take two sets of parameters θ and θ′

2. generate a line joining these points (e.g. θ(α) = (1−α)θ +αθ′) where α is a scalar
value.

3. plot values of the loss along this line f (α) = L(θ(α))

Figure 4.3 shows an example of such a plot of linearly interpolating the loss of neural
networks trained on the MNIST dataset [14]
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(a) 1D Loss Surface (b) 2D Loss Surface

Figure 4.3: Visualizing loss surfaces Figure illustrating the procedure described in [14, 27] to
plot the loss surface between two parameters in 1D and the loss surface in 2D for a
neural network trained for digit classification on the MNIST task.

4.3.2.2 2D Loss Visualization

The basic algorithm here as described in [27] is:

1. Choose a parameter vector θ as the center of the graph

2. Choose random direction vectors η and δ

3. Plot the loss surface 1D (f (α) = L(θ∗ +αδ)) 2D (f (α,β) = L(θ∗ +αδ+ βη))

We follow a similar procedure as that described in [27]. Note here that the loss
function changes at every timestep hence, we expect to see different loss surfaces for
every state input in the agent trajectory as opposed to a static loss surface as that
expected for supervised learning.

4.3.2.3 Visualizing the Actor Critic Loss

Applying a similar process as that described in Section 4.3.2.2, yields a plot of the loss
surface such as that shown in Figure 4.4.

4.4 visualizing learning iterates

A related idea is to project the intermediate function parameters onto this loss surface.
This allows us to observe the optimization trajectory across time. Note, that for a fixed
loss function, this would result in static loss contours, with the trajectory tracing a
path across this loss surface. For an optimization problem such as that found in the
actor critic framework, the optimization trajectory should be more complicated, due to
changing loss surfaces. Experimental evidence suggests that the optimzation is taking
place on a lower dimensional manifold, with the trajectory tracing out a path such as
that shown in Figure 4.5.

4.5 future / ongoing work

Since this research direction is still a work in progress, here are some questions that
we’ve been thinking about, and we think we’d be able to answer through an approach
such as this:

• What is the effect of the aforementioned stabilization tricks on the loss landscape?
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Figure 4.4: Visualizing Actor Critic Loss Landscapes These plots were made on consecutive
timesteps in the agent trajectory. The drastic discontinuities in the landscape between
similar states provides a visual representation of the difficulty of the optimization
problem.

• Which of these heuristics end up having the same effect?

• Does actor critic optimization provably take place on a lower dimensional loss
surface (as suggested by experimental evidence)?

• Are there ways to make the loss surface more invariant to state changes (or weakly
variant)?

(a) Plotting learning iterates (3D) (b) Plotting learning iterates (2D)

Figure 4.5: Plotting learning iterates Projecting the policy checkpoints to a lower dimensional
surface. It is interesting to note the similarity between this result and that in [27], in
the shapes of the overall learning trajectories.



5
CONCLUS ION

In the preceding chapters, we looked at a novel system designed for the reinforcement
learning framework. There are many distinctive features of this system, but a common
thread is the ability to generate interactive visualizations for the RL framework. We
believe this system could help RL researchers better understand RL algorithms and
debug RL policies. Towards this end, we provided a walkthrough example of how this
system could fit into the RL debugging workflow.

The system is designed with extensibility in mind, with Vizarel serving as a core
around which to integrate different plugins. These plugins could take the form of simple
visualizations, or be the result of more sustained research investigations. We provided
an example of the latter, that we believe will help increase insight into actor-critic
optimization.

We believe that the best research tools have a symbiotic relationship with the user.
They help us interpret our results, but also guide us towards better questions to ask and
hypotheses to confirm. We wonder what new questions a system like this would enable
us to ask and what types of metadata we should start storing instead. This is but one
example of what such a system design could look like, and what it could enable. We are
uncertain whether Vizarel will be the last tool in this line of inquiry. However, we are
certain that the best designs will continue to emerge from this process of exploration.
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