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Abstract

Many real world machine learning problems require solving a non-convex
optimization problem and this has been a niche area of research due to
non-convex problems being NP-hard to solve. In this project, we explore
the space of non-convex optimization for common machine-learning prob-
lems. We motivate the non-convex problem formulations of sparse recov-
ery and low-rank matrix recovery with its important real world applica-
tions and share the fundamental ideas about the two main solution ap-
proaches: convex relaxation and direct non-convex optimization. We also ex-
plain some of the popular non-convex optimization algorithms that have
been shown to be very efficient in practice and yield provably optimal
solutions in polynomial time, such as projected gradient descent and its
variants. We then discuss one such application of sparse recovery in as-
tronomy and share results from our implementation of start-of-the-art al-
gorithm (Högboms CLEAN) to denoise noisy spatial images.
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1 INTRODUCTION

A general optimization problem can be formulated as:

min
x∈Rp

f (x)

s.t. x ∈ C

where x is the variable of the problem with x ∈ Rp, f : Rp → R is the
objective function, and C ⊆R

p is the constraint set of the problem.

An optimization problem is called as convex optimization problem if
both the objective function and constraint set are convex, i.e., the objective
is a convex function and the constraint set is a convex set. An optimization
problem that violates either of these conditions, i.e., if it has a non-convex
objective function or a non-convex constraint set, or both, is said to be a
non-convex optimization problem.

1.1 Motivation
In many real world machine learning problems where we desire to

learn a model from available data, we often come across problems having
extremely high-dimensional feature space, while having a fewer number
of training samples. Examples include web-scale document classification
where n-grams based representations can have feature dimensionalities
in millions, recommendation systems with millions of items being recom-
mended to millions of users, gene-expression analysis where gene expres-
sion data on patients is used to discover genetic bases of diseases.
To deal with such high feature dimensionality, one often needs to impose
structural constraints on the learning models being estimated from the
data. As we will see, such constraints often turn out to be non-convex and
the problem becomes a non-convex optimization problem.

1.2 Sparse Regression
We will motivate the sparse regression problem using the example of

gene expression analysis.

With the availability of DNA micro-array gene expression data, it is
becoming possible to discover genetic explanations for a wide range of
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physiological traits, particularly diseases. In this problem setting, a data
sample consists of expression levels of a large number p of genes encoded
as a real vector xi ∈ Rp, and the corresponding phenotypical trait yi ∈ R,
and the total data consists of n data samples from from n human sub-
jects/patients in the study, i.e., {xi , yi}i=1,...,n.

For simplicity, we assume a linear model to predict phenotypical re-
sponse from gene expression levels, i.e. yi = xTi w

∗ + ηi , where w∗ ∈ Rp is
the underlying linear model and ηi is some noise. A popular approach is
to formulate this problem as a linear regression problem using the least
squares formulation:

ŵ = argmin
w∈Rp

N∑
i=1

(yi − xTi w)2

The standard linear regression methods fail to solve this problem in
cases where, either
(a) the number of features (ie. size of parameter w) is much larger than
the available data samples i.e. n� p, or
(b) if we expect only a few of the features to be actually relevant to the
problem.

In the gene expression problem, the number of genes whose expres-
sions levels are recorded are typically very large, while the number of
samples (human subjects) are not typically as large, i.e. n� p. Secondly,
we do not expect all the genes being recorded to influence the given phe-
notype. In fact, a major objective of such studies is to identify the small set
of genes which most significantly influence the given phenotype. This im-
plies the underlying vector w is very sparse and leads us to define sparse
regression problem.

In a sparse regression problem, we assume the underlying model is
sparse, i.e. a vector having no more than s non-zero entries (called as s-
sparse vector). The least formulation with this assumption is modified
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into a sparse recovery problem, defined below:

ŵsp = argmin
w∈Rp

N∑
i=1

(yi − xTi w)2

s.t. ‖w‖0 ≤ s

where ‖w‖0 represents the L0 norm of w, which is equivalent to the
number of non-zero entries in the vector. Although the objective function
in the above formulation is convex, the constraint ‖w‖0 ≤ s is a non-convex
constraint set. This can be observed from the following example where a
convex combination of two 1-sparse vectors in set ‖w‖0 ≤ 1 produces a
2-sparse vector which lies outside the set.

Figure 1: Example showing ‖w‖0 ≤ s is a non-convex constrained set.
A convex combination (average) of two 1-sparse vectors in set ‖w‖0 ≤ 1 produces a 2-
sparse vector which lies outside the set.

Sparse recovery handles the twin problems of identifying the relevant
features and countering data-starvation since typically only n ≥ s log(p)
data samples are required for sparse recovery to work as opposed to n ≥ p
in linear regression. However, in general, sparse recovery is an NP-hard
problem and we will explore some settings where the nice structure allows
us to have optimization algorithms which work in polynomial time in the
next chapter.

1.3 Low-Rank Matrix Recovery
Let us now discuss about the problem of low-rank matrix recovery,

which finds applications in recommendation systems. Recommendation
systems are popularly used to model the preference of users and make
good estimates of how each user likes each item (say a song) or would
benefit from it (say a drug). However, users typically rate only a handful
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of the millions of songs, and it is not feasible to administer every drug to
a user. Thus, for a vast majority of user-item pairs, we have no direct in-
formation.

We can visualize this problem as a matrix completion problem: for a
set of m users u1,u2, ...,um and n items a1, a2, ..., an, we have a m x n prefer-
ence matrix A = Aij , where Aij encodes the preference of ith user for the
jth item. Now, we have only k entries of this matrix available (with k�m
x n entries of A), corresponding to the available user-item pair data. For
recommendation, we need to recover all the remaining entries i.e. com-
plete the matrix.
If there is no structure in the matrix, and by extension, in the way users
rate items, there would be no relation between the unobserved entities and
the observed ones and hence there would be no unique way to complete
the matrix. Therefore, it becomes essential to impose structure on the ma-
trix and a typical assumption is for the matrix to have a low rank. This is
equivalent to assuming that there is an r-dimensional vector ui denoting
ith user and an r-dimensional vector aj denoting jth such that Aij ≈ 〈ui ,aj〉.

If we denote Ω ⊂ [m] x [n] as the set of observed entries of A, then low-
rank matrix recovery problem can be formulated as:

Âlr = argmin
X∈Rmxn

∑
(i,j)∈Ω

(Xij −Aij)2

s.t. rank(X) ≤ r

This formulation also has a convex objective function, but a non-convex
rank constraint. In general, matrix recovery problem is NP-hard. How-
ever, if the matrix has nice structures (such as Restricted Isometry Prop-
erty), we can get polynomial time optimal algorithms. We will discuss one
such algorithm (SVP) in the next chapter.

1.4 Convex Relaxation Approach
Due to the challenge of non-convexity and the associated NP-hardness,

the most popular approach in literature is of convex relaxation. The relax-
ation approach modifies the problem itself by relaxing the non-convexity
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in objective function or the constraint, so it becomes a convex optimiza-
tion problem.

In case of sparse linear regression, the relaxation approach relaxes the
constraint set by changing the constraint to use L1 norm instead of L0
norm, i.e.

ŵrelaxed =argmin
w∈Rp

N∑
i=1

(yi − xTi w)2

s.t. ‖w‖1 ≤ s

or by using its regularization based version:

ŵregularized =argmin
w∈Rp

N∑
i=1

(yi − xTi w)2 +λ‖w‖1

The above relaxations convert the problem to the popular LASSO for-
mulations which are convex and have polynomial time solutions. Now, in
general, such problems can change the problem drastically, and solutions
to the relaxed formulations can be poor solutions to the original prob-
lem. However, it has been shown that if the problem possesses certain nice
structure, then under careful relaxation, the solutions to relaxed problems
are optimal for the original non-convex problems as well.

1.5 Non-Convex Optimization Approach
Although the relaxed convex optimization problems are solvable in

polynomial time, it is often challenging to solve them efficiently for large-
scale problems. The non-convex optimization approach is to not relax the
non-convex problem and solve them directly.

The most common techniques used to solve non-convex optimization
problems include simple and efficient algorithms like projected gradient
descent, alternating minimization, expectation maximization algorithm,
stochastic optimization and their variants.
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In recent literature it has been shown that if the problem or the data
posses nice structure (such as satisfying Restricted Isometry Property),
non-convex optimization approaches avoid NP-hardness and provide polynomial-
time solutions which lead to global minima. Also, interestingly, it turns
out that the problem structures that allow non-convex approaches to avoid
NP-hardness are similar to those that allow their convex relaxation coun-
terparts to avoid large relaxation gap. And in fact, many real world prob-
lems possess such nice structures leading to both convex-relaxation and
non-convex techniques to work.

It has been shown in recent works, that non-convex approaches outper-
form relaxation based approaches in terms of speed and scalability mak-
ing them more scalable approaches. The below figure shows an empirical
comparison of non-convex and relaxation approaches for sparse recovery
problem.

Figure 2: An empirical comparison of run-times by various approaches for sparse recov-
ery problem. LASSO is the convex-relaxation approach, while FoBa (Forward-Backward
algorithm) and IHT (Iterative Hard Thresholding) are non-convex approaches. Jain and
Kar [1]
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2 NON-CONVEX TECHNIQUES

In this chapter, we discuss the most popular technique in non-convex
optimization i.e. Projected Gradient Descent. We discuss the fundamen-
tals of this approach and how it is used to solve the problems of sparse
recovery and low-rank matrix recovery and discuss the corresponding al-
gorithms - Iterative Hard Thresholding (IHT) for sparse recovery and Sin-
gular Value Projection (SVP) for low-rank matrix recovery.

Before diving further into these algorithms, let us first discuss some of
the ideas that come from convex function analysis. For most cases, unless
explicitly stated otherwise, we will assume that functions are continuously
differentiable.

Convex Combination - A convex combination of a set of n vectors
xi ∈ R

p, i = 1, ...,n in an arbitrary real space is a vector xθ :=
∑n
i=1θixi

where θ = (θ1,θ2, ...,θn), θi ≥ 0 and
∑n
i=1θi = 1.

Convex Set - A set C ∈Rp is considered convex if, for every x,y ∈ C and
λ ∈ [0,1], we have (1−λ)x+λy ∈ C as well.

Convex Function - A continuously differentiable function f : Rp → R

is considered convex if for every x,y ∈Rp we have f (y) ≥ f (x) + 〈∇f (x),y−
x〉, where ∇f (x) is the gradient of f at x.

Now that we know some basic definitions in our convex function anal-
ysis, we now introduce the concept of projections first for convex settings
and then extend it to non-convex problems.

2.1 Convex Projections
The concept of projection plays an important role in the projected gra-

dient descent technique both for convex as well as for non-convex prob-
lems. Given any closed set C ∈Rp, the projection operator πC(.) is defined
as

πC(z) := argmin
x∈C

‖x− z‖2

In general, we may use any Lp-norm to define the above projection
operator, but we see that the L2-norm is the most commonly used. If C
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Figure 3: Left:Convex sets. Middle:Non-convex sets. Right:Convex functions.

is a convex set, then the above problem reduces to a convex optimization
problem.

2.2 Projected Gradient Descent (PGD)
The projected gradient descent algorithm is an extremely simple and

efficient technique that extends the vanilla gradient descent method by
defining projection after every gradient update step. This technique ef-
fortlessly scales well to large problems and can be applied to non-convex
problems directly. The figure below explains the algorithm in brief.

Figure 4: Projected Gradient Descent (PGD) algorithm

Now let us study projections for non-convex settings. The above defi-
nition of projection is easily transferable and can be defined over any type
of set C. Depending on the non-convex set, the projection can be taken
accordingly. We will see how it is undefined for non-convex sets in case of
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sparse recovery and low-rank matrix recovery problems below.

2.3 Sparse Recovery via Projected Gradient Descent
For a sparse recovery setting, the problem breaks down to applying

projected gradient descent algorithm that requires projections onto the
set of s-sparse vectors. Also, for a R

n dimensional space, the problem of
projected into a space of s-sparse vectors involves sorting the coordinates
of the vector z according to magnitude and setting all but the top-s coordi-
nates to zero. We thus project in this way onto the non-convex constraint
set C such that the vectors are s-sparse. A interesting thing to note is that
our objective function is convex whereas the constraint set here makes the
problem non-convex.

f (w) = ‖y−Xw‖22
This formulation would tempt the readers to adapt the projected gra-

dient descent algorithm as studied above. Indeed a variant of the above al-
gorithm called as the Iterative Hard Thresholding (IHT) algorithm is used
to solve such a system. The figure below discusses the algorithm in brief.

Figure 5: Iterative Hard Thresholding algorithm for Sparse Recovery

This algorithm is extremely simple to implement as well as extremely
fast in execution, given that only gradient and projection steps are re-
quired.
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Another class of algorithms that are famous for sparse recovery applica-
tions are the pursuit-style algorithms where we iteratively discover sup-
port elements. This family of algorithms includes Orthogonal Match-
ing Pursuit (OMP) [Tropp and Gilbert, 2007], Orthogonal Matching Pur-
suit with Replacement (OMPR) [Jain et al., 2011], Compressive Sampling
Matching Pursuit (CoSaMP) [Needell and Tropp, 2008], and the Forward-
backward (FoBa) algorithm [Zhang, 2011].

Pursuit-style methods work by gradually looking for the elements in the
support of the true model vector w∗. At every time-step, a new support
element is added to a set that is initially which is then used to solve a
least-squares problem. A common practice is to add the coordinate where
the gradient of the objective function is highest in magnitude among coor-
dinates not already in the support. These algorithms are applicable wher-
ever the structure of the constraint set can be represented as a combination
of a small number of subsets of constraint set (atoms).

2.4 Low-Rank Matrix Recovery via Projected Gradient Descent
For matrix recovery problem that finds applications in recommenda-

tion systems, the projection involves computing the low-rank matrix X
that is defined by the following rule,

πC(A) := argmin
X∈C

‖A−X‖F

This projection can be computed using the Singular Value Decompo-
sition on the matrix A and retaining the top r singular values and their
corresponding vectors.

The above algorithm thus helps us to recover a low-rank matrix X given
by the following optimization rule,

min
1
2
‖A(X)− y‖22

s.t. rank(X) ≤ r

Applying the PGD algorithm to the above formulation, gives us the
Singular Value Projection (SVP) algorithm that involves finding projec-
tions onto the set of low rank matrices which as seen before can be easily
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found by computing the singular value decomposition of the iterates. The
figure below explains the algorithm in brief.

Figure 6: Singular Value Projection algorithm for Low-rank Matrix Recovery.

This algorithm too offers ease of implementation and speed similar to
the IHT algorithm for sparse recovery.

One key takeaway from this discussion is that the PGD algorithm ac-
tually does not require the objective function to be convex over the entire
R
p but requires a careful analysis of the structure of the objective function

and constraint set to get the optimal solution in polynomial time.
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3 SPARSE SIGNAL TRANSMISSION AND RECOVERY

As motivated in prior sections, the basic task of sparse recovery al-
gorithms is to deduce an estimate for w∗, in the equation yi = xTi w

∗ + ηi .
Here, we aim to recover an estimate of w∗ which is sparse, which cannot
be guaranteed through the use of traditional sparse regression approaches.
This mathematical apparatus, turns out to be a clean way to model both
the transmission and recovery of sparse signals. Note, that here we de-
fine a sparse signal in the exact same way as before, in that the L0 norm
(non-zero components in basis representation of the signal), is minimized.
Natural signals are an excellent example of sparsity, and this model more
broadly finds its application where linear measurements samples are used
to reconstruct an approximation of the original signal.

Linear mea-
surements
(sampling)

Used to
reconstruct

original
signal

Figure 7: Sampled signal Figure 8: Recovered signal

In contrast to other sparse recovery problems, for sparse signal recov-
ery, we must come up with both a design matrix X and the recovery algo-
rithm A : Rn×Rnxp→R

p. Compare this to gene expression analysis, where
we don’t have control over the design matrix X, hence we are restricted to
only designing the recovery algorithm. Hence, for the task of recovering
sparse signals, we may make strict assumptions about the design matrix
(which lead to nicer properties and subsequent tractability). Note, that
natural data may not satisfy many of the simplifying assumptions that we
make, which leads to us having to relax a subset of these assumptions.
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3.1 IHT for signal recovery
The IHT algorithm which was introduced in an earlier section may be

used for the sparse recovery of signals. It has the advantages of being:

1. Simple to implement (also more understandable)
2. Extremely fast in practice

However, it has unclear recovery guarantees, due to the problem itself be-
ing NP-hard. It turns out that we can solve this problem efficiently if X
has special structural properties, namely being isometric. An isometry
is any transformation that maps elements to the same (or another met-
ric space), such that the distance between the image elements in the new
metric space is equal to the distance between the elements in the original
metric space. Even if our design matrix X does not possess global isom-
etry, but has the restricted isometry property (RIP), which preserves the
space of sparse vectors, we can recover the signal.

3.2 Basis Pursuit Family of Algorithms
3.2.1 Basis Pursuit (BP)

Ideal sparse reconstruction minimizes ||x||0 while being consistent with
Ax = y. However, since the problem is intractable, we typically make a
convex relaxation of this problem in practice, and instead solve the fol-
lowing problem:

min ‖x‖1
s.t Ax = y

3.2.2 Basis Pursuit with epsilon noise (BPε)

min ‖x‖1
s.t ‖y−Ax‖2 ≤ ε

3.2.3 Quadratic Programming (QPλ)

min ‖y−Ax‖2 +λ‖x‖1
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In practice, the measured signal has noise, hence we formulate the
problem as either basis pursuit with epsilon noise or as quadratic pro-
gramming. Here, we would tune the parameters λ,ε based on the signal-
noise ratio (SNR).

3.3 Matching pursuit algorithm
A more commonly used technique is the matching pursuit algorithm,

which is the fundamental tool behind a large variant of algorithms used
for sparse signal recovery.

Input: Signal f (t), dictionary D with normalized columns gi
Output: List of co-efficients an and indices for corresponding

1 Initialization
R1← f (t)
n← 1

2 Repeat gγn ∈ D with max | < Rn, gγn > |
an← | < Rn, gγn > |
Rn+1← Rn − angγn
n← n+ 1

3 Until stop condition ||R||n < thresh
4 Return

Algorithm 1: Matching Pursuit

Properties
• Algorithm converges i.e. the residual term Rn← 0, for any signal f

that is in the space spanned by the dictionary D.

• Error ||R||n decreases monotonically

• As of each step the residual is orthogonal to the selected filter.

• For the condition where the vectors in D are orthonormal, the algo-
rithm is a form of PCA.

Applications
• Signal, image, and video coding

• Shape representation and recognition

Note: The main drawback (or bottleneck) to this algorithm is that a
large dictionary D has to be searched at each iteration.
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3.4 Orthogonal matching pursuit
This is a common variant of the matching pursuit algorithm in which

all the coefficients extracted so far are updated by computing the orthogo-
nal projection of the signal onto the subspace spanned by the set of atoms
so far. This leads to nicer results (with the given overhead of increased
computation).

17



4 SIGNAL RECOVERY FOR RADIO ASTRONOMY

Radio astronomy is a subfield within astronomy which studies celestial
objects in the radio frequency band of the electromagnetic spectrum. The
signals are captured through large radio antennas (telescopes), which are
then correlated using techniques from aperture synthesis or interferome-
try. We picked up a sparse recovery application in radio astronomy and
implemented a state-of-the-art algorithm (Högboms CLEAN) for recover-
ing cleaned images from the noisy spatial images.

4.1 Högboms CLEAN Algorithm
The CLEAN algorithm is the precursor to a wide range of algorithms

which are designed to recover the original ’true’ image from noisy mea-
surements. The mathematical foundation of the algorithm is the match-
ing pursuit technique for sparse signal recovery which we previously in-
troduced. The CLEAN algorithm assumes that the original image consists
of a number of point sources (which are commonly assumed to be Gaus-
sian in nature). We can think of the dictionary D (see OMP explanation
for context), consisting of atoms which are point sources of varying pa-
rameters (which would be differing variance in the case of gaussians). The
algorithm will iteratively find the highest intensity source in the image,
and subtract a smaller gain of this source convolved with the point spread
function (PSF), until the highest value is lesser than a threshold (residual).
For further context, we invite the reader to refer [2].

An illustration of this is shown below:

Figure 9: Conversion from noisy image to CLEAN image

We now list interesting points we came across in the context of OMP
and CLEAN:

• Though, theoretically the orthogonal matching pursuit (OMP) algo-
rithm has a larger overhead, in practice it is preferred to plain MP,
due to its’ observed faster convergence property.
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Figure 10: Supernova remnants at the centre of our galaxy, data collected at 325 MHz

• OMP is typically faster than basis pursuit (BP) and simpler to code.

• BP is convex, hence will converge to a single global optimum (with
respect to the convex relaxation of the original l0 norm)

• Högboms CLEAN is identical to matching pursuit (MP), but forms
the residual in image space instead of measurement space.

• Discovered in the early ’70s, the CLEAN algorithm was originally
intended for radio astronomy (where it is now the dominant tool for
deconvolution of images), but has now also found use in processing
MRI scans.

Figure 11: MRI Scans
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